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1. Introduction to the theme

Many-body systems out of equilibrium

• Mathematical modelling: infinite system or periodic boundary
conditions

- translation invariance
- conservation laws
- symmetry and duality

F Bulk behaviour unaffected

• Real physical systems: box, boundary fields and/or open b.c.

- No translation invariance
- Exchange of mass, energy and other conserved quantities
- bulk symmetries broken

F Bulk behaviour depends on b.c.
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One space dimension

• dramatic and unexpected effects
- non-equilibrium bulk phase transitions
- long-range correlations
- anomalous transport
- . . .

F Challenge:

- deal with absence of translation invariance, conservation laws,
conventional symmetries
- understand emergence of new phenomena
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Some questions of current interest (phenomena)

• Steady states with broken conservation law (microscopic)

- steady state selection in bulk and boundary-driven systems
- correlations in boundary-driven systems

• Hydrodynamics (macroscopic)

- boundary conditions in terms of pde
- microscopic structure of rarefaction waves and discontinuities
- solitons and other travelling waves
- spde’s for fluctuation fields

• Large deviations (microscopic and macroscopic)

- additivity principle
- macroscopic fluctuation theory
- dynamical phase transitions

• . . .
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Some problems of current interest (models)

Traditional studies: short range interactions and short-range
correlations in the absence of boundaries

• Long-range interactions

- long-range jumps
- local jumps with long-range rates
⇒ How do we define microscopic b.c.?

• Long-range correlations even without boundaries
⇒ Do such models exist in 1 dim?

• Many conservation laws

• Deterministic cellular automata

• . . .
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All seems somehow interconnected ...

⇒ Questions: Which feature is important for what on which level
of description in the presence of boundaries? Are there any general
answers? Universality?

• Some basic insights that have emerged:

− Boundary-driven: Current supported by long-range correlations

− Bulk and boundary driven: Travelling wave hits boundary

F Ambitious. Today: discuss some recent developments in the
study of steady states, hydrodynamics, and fluctuations in the
presence of boundaries as well as related problems.

F Attack the problem of general insights by studying concrete
models
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2. Boundary-induced phase transitions

Open driven diffusive systems

- bulk: (i) biased random motion, (ii) short range interaction, (iii)
particle conservation
- boundaries: coupling to external reservoirs with fixed densities

1

l
2

l

J

l

F

(l)

⇒ stationary particle current J(ρ)

⇒ Steady-state selection (which density)?
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Boundary-induced phase transitions [Krug (1991), Popkov, GMS (1999)]

• Extremal-current principle [ Popkov, GMS (1999)]

J =

{
maxρ∈[ρ+,ρ−] J(ρ) ρ− > ρ+

minρ∈[ρ−,ρ+] J(ρ) ρ− < ρ+

• Universal density profile ρk =
√

κ
πk in extremal current phases

[Hager, Krug, Popkov, GMS (2001)]

• Derivations:
- regularization of hydrodynamic equation with Dirichlet boundary
condition For ρ+ = 0: [Krug (1991)

- flow of microscopic fluctuations [Popkov, GMS (1999)]

- entropy solutions for hydrodynamic equations [Bahadoran [2010]
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Open asymmetric simple exclusion process (ASEP)

• ASEP: At most one particle per site on integer lattice with L sites
η = (η1, . . . , ηL), ηk ∈ {0, 1}

Process Transition Rate

Jump to the right 10→ 01 r

Jump to the left 01→ 10 `

Deposition at site 1 (L) 0→ 1 α (δ)

Annihilation at site 1 (L) 1→ 0 γ (β)

β

l r l rα

γ

δ
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• Invariant measure for p.b.c.: Bernoulli product measure with
density ρ (uncorrelated)

• Stationary current: J(ρ) = (r − `)ρ(1− ρ)

• Open: exact stationary distribution via matrix product ansatz
[Derrida, Evans, Hakim, Pasquier (1993)] or recursive [Domany, GMS (1993)]

• Phase diagram:

- Low-density phase LD ρ = ρ−
- coexistence line (first order transition)
- High-density phase HD ρ = ρ+

- second order transition lines
- maximal-current phase ρ = 1/2
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• First order transition: microscopic sharpness of macroscopic
shock discontinuity

• Second order transition: confinement of rarefaction wave and
nonlinear fluctuating hydrodynamics
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Open Katz-Lebowitz-Spohn model

• Exclusion process with next-nearest-neighbour interaction [Katz,

Lebowitz, Spohn (1985)]

• TAKLZ: Bulk jump rates at bond (k, k + 1)

Transition Rate

0100→ 0010 1 + δ

1100→ 1010 1 + ε

0101→ 0011 1− ε
1101→ 1011 1− δ

• Invariant measure for p.b.c.: Ising measure (short-range
correlations)
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Stationary current J(ρ):

Phase diagram (δ > 0, ε > 0):
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3. Reverse duality for the open ASEP

Duality

• Consider two Markov processes η(t) and x(t) with generally
different countable state spaces

- Intensity matrices Wηη′ = w(η → η′), Qxx′ = w(x→ x′)

- Quantum Hamiltonian formalism: H = −W T , G = −QT

• Invariant measures µ∗η, π∗x

• Reverse processes for strictly positive invariant measures:

Hrev = µ̂∗HT (µ̂∗)−1, Grev = π̂∗GT (π̂∗)−1

− Diagonal matrices: µ̂∗, π̂∗ with µ∗η, π∗x on the diagonal
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• (Conventional) Duality: Relationship between two processes that
yields time-dependent expectations of one process in terms of the
dual in terms of a duality function D(x,η) [Liggett, 1985]

• Paradigmatic example: Symmetric simple exclusion process
(SSEP) where hard-core particles perform lattice random walk

− Expectation of local density at time t for many-particle initial
state given in terms of transition probability for just one particle

− Joint expectation for N particles at times t1, . . . , tN given in
terms of transition probability for N particles

− Origin: SU(2) symmetry of generator (apparent through
relationship to quantum XXX Heisenberg spin chain [GMS and Sandow,

1994])
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• Duality at the level of generators: DH = GTD

- Duality matrix Dxη = D(x,η)

- Expectation 〈D(x,η(t)) 〉η = 〈D(x(t),η) 〉x
- For family of functions f x(η) := D(x,η):

〈 f x(t) 〉µ =
∑

y

P(x, t|y, 0)〈 f y(0) 〉µ

with transition probability P(x, t|y, 0) of dual process

• Useful information about expectations if dual process has simple
properties

• Reversible process H = GT : Duality = Symmetry



1. Introduction 2. Boundary-induced phase transitions 3. Reverse duality 3. Shock ASEP and reverse duality for the open ASEP 4. Outlook

• Reverse duality: HR = RGT

with reverse duality matrix R and duality function Rηx = R(η, x)

• Useful information about measures if reverse dual process has
simple properties

- For family of measures µx
η(t) := R(η, x):

µx
η(t) =

∑
y

P(x, t|y, 0)µy
η(0)

- Duality function can take negative values (corresponding to
signed measures)

• Reversible process H = GT : Reverse duality = Symmetry

F BUT: open boundary breaks symmetry
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Open ASEP

• Hopping asymmetry and time scale q :=
√

r
` , w :=

√
r`

• Boundary densities ρ± and boundary jump barriers ω±

α = (r + ω−)ρ−, γ = (`+ ω−)(1− ρ−)

β = (r + ω+)(1− ρ+), δ = (`+ ω+)ρ+

• Fugacities:

z] ≡ z(ρ]) =
ρ]

1− ρ]
• Sandow function [Sandow, 1994]

κ±(x , y) :=
1

2x
(y − x + r − `±

√
(y − x + r − `))2 + 4xy)

κ+(α, γ) = z−1
− , κ+(β, δ) = z+

κ−(α, γ) = − `+ ω−
r + ω−

, κ−(β, δ) = − `+ ω+

r + ω+
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• Invariant matrix product measure (MPM) with generally
infinite-dimensional matrices [Derrida et al., 1993]

• Special manifolds

BN := {α, β, γ, δ ∈ R+ : κ+(α, γ)κ+(β, δ) = q2N}

BMN := {α, β, γ, δ ∈ BN : κ−(α, γ)κ−(β, δ) = q−2M}, 1 ≤ M ≤ N

? No MPM on BMN for L ≤ N −M + 1 [Essler and Rittenberg, 1996]

? (N + 1)-dimensional matrices on manifold BN \ BMN for any L
and on BMN for L > N −M + 1 [Mallick and Sandow, 1997]

? M = 1, L = N: Finite blocking measure with strictly increasing
marginal fugacities zk ∝ q2k

[Bryc and Swieca, 2019]
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Shock ASEP

• At most one particle per site on integer lattice with L sites, N
particles, single-file jumps, reflecting boundaries
x = (x1, . . . , xN), 1 ≤ x1 < · · · < xi < xi+1 < · · · < xN ≤ L

Process Transition Rate

Jump of particle i to the right xi → xi + 1 ri

Jump of particle i to the left xi → xi − 1 `i

4
r l r ll 1 1 2 3

ri = (r − `)ρi (1− ρi )
ρi − ρi−1

, `i = (r − `)ρi−1(1− ρi−1)

ρi − ρi−1

with pairwise unequal parameters ρi ∈ (0, 1)
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Proposition (Reversibility of shock ASEP)

The N-particle shock exclusion process with reflecting boundaries
is reversible w.r.t. the unnormalized product measure

π∗x =
N∏
i=1

d2xi
i

where

di :=

√
ri
`i

is the hopping asymmetry of particle i .

Proof: (i) The definition of the shock ASEP implies

zi = q2zi−1 (?)

(ii) Straightforward computation shows G rev = π̂∗GT (π̂∗)−1 = G .
�
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Definition (Bernoulli shock measures)

With auxiliary boundary reservoir sites x0 := 0 and xN+1 := L + 1
the product measure µx

η =
∏L

k=1 p
x
ηk

with marginals

px
ηk

=

{
(1− ρ?i )(1− ηk) + ρ?i ηk k = xi , 1 ≤ i ≤ N
(1− ρi )(1− ηk) + ρiηk xi < k < xi+1, 0 ≤ i ≤ N

is called a Bernoulli shock measure with N microscopic shocks at
positions xi ∈ {1, . . . , L} and bulk densities ρi for 0 ≤ i ≤ N, and
shock densities ρ?i for 1 ≤ i ≤ N.

N = 4

4

ρ∗
1 2

4
ρ∗

ρ∗
3ρ∗

ρ
ρ

ρ
ρ

0

1

3
4

x x5x x x0 1 x2 3
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Theorem (One-particle reverse duality)

Let H be the generator of the open ASEP and for parameters ρ0

and ρ1 let G be the generator of a simple biased random walk with
jump rates r1, `1 and reflecting boundaries. Further, let µxη be the
BSM with left bulk density ρ0 = ρ− and shock density

ρ?1 =
α

α + γ
.

The generators H and G satisfy the reverse-duality relation

HR = RGT

w.r.t. the duality matrix R with matrix elements Rηx = d2x
1 µxη if

and only if the following two conditions are satisfied:
(i) The shock stability condition (?) is satisfied for i = 1,
(ii) The boundary rates are on the manifold B1

1.
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Corollary (Shock random walk)

Denote by µxη(t) the distribution at time t of the open ASEP, and let Conditions (i) -
(ii) of the previous Theorem be satisfied. Then, for any x ∈ {1, . . . , L}

µxη(t) =
L∑

y=1

P(y , t|x , 0)µyη(0)

where

P(y , t|x , 0) =
d2

1 − 1

d2L
1 − 1

d
2(y−1)
1 +

2

L

L−1∑
p=1

dy−x
1 ψp(x)ψp(y)

w

εp
e−εp t

with εp = w
[
d1 + d−1

1 − 2 cos
(πp

L

)]
and ψp(y) := d1 sin

(πpy
L

)
− sin

(
πp(y−1)

L

)
is

the transition probability of the biased random walk starting at time t = 0 from x.
The limit µ∗η := limt→∞ µxη(t) is the unique invariant measure and is given by the
convex combination

µ∗η =
d2

1 − 1

d2L
1 − 1

L∑
y=1

d
2(y−1)
1 µyη

of shock measures µyη .
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Remarks

(1) On large scales the drift velocity and diffusion coefficient are
given by the rates of the shock exclusion process even if (?) is not
satisfied [Ferrari and Fontes (1994)]

(2) The invariant measure of the open ASEP can be expressed by
the two-dimensional representation of the stationary matrix
product algebra. [Mallick and Sandow, 1997)]

(3) The spectrum of the generator G given by the eigenvalues εp
yields a subset of eigenvalues of the generator H of the open ASEP
and is in agreement with the picture of spectral properties arising
from a shock random walk off the manifold B1

1.
[GMS and Domany (1993), Dudziński and GMS (2000); Santen and Appert (2002); de Gier and Essler (2006)]
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Theorem (N-particle reverse duality)

Let H be the generator of the open ASEP and for parameters
ρ0, . . . , ρN let G be the generator of the N-particle shock exclusion
process. Further, let µx

η be the BSM with left boundary density
ρ0 = ρ− and shock fugacities

z?i =
α

γ
q2(i−1)

for 1 ≤ i ≤ N ≤ L. The reverse-duality relation

HR = RGT

w.r.t. the duality matrix R with matrix elements Rηx = π(x)µx
η

holds if and only if the following two conditions are satisfied:
(i) The microscopic shock stability condition (?) is satisfied for all
i ∈ {1, . . . ,N},
(ii) The boundary rates are on the manifold B1

N .
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Corollaries

(1) The evolution of the open ASEP with an initial BSM with N
shocks is given by the transition probabilities of the conservative
N-particle shock exclusion process.
(2) The shock ASEP is also intertwining dual of the open ASEP.

Remarks

(1) Spectral properties of the generator H have been obtained
from the Bethe ansatz
[Nepomechie (2004); De Gier and Essler (2005); Simon (2009); Crampé et al. (2010)]

(2) The conservative reflective boundaries of the reverse dual are in
contrast to the conventional duality for the open SSEP which is
dual to the SSEP with nonconservative absorbing boundaries.
[Spohn (1983); Carinci et al. (2013); Frassek et al. (2020)]

(3) A reverse dual with absorbing boundaries exists. [GMS (2022)]
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Outline of proofs

• To prove reverse duality notice:

(a) Columns of duality matrix R are the BSM probability vectors
|µx 〉

(b) Duality implies invariant subspace spanned by the BSM
probability vectors: H|µx 〉 ∈ span{|µy 〉}

⇒ Step 1: Use local transitions to prove that
H|µx 〉 =

∑
y Gxy|µy 〉}

⇒ Step 2: Prove by computation that coefficients Gxy are
nonpositive for x 6= y and conserve probability, i.e.,
Gxx = −

∑
x6=y Gxy

• To prove explicit time-dependent transition probability for one
shock notice that G is a tridiagonal Toeplitz matrix
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4. Outlook

• Reverse duality yields detailed microscopic structure of shocks
under certain conditions

- microscopically sharp
- random walk of a single shock
- coalescence (bound state) of multiple shocks

⇒ Generalization to BMN ?

⇒ Underlying symmetry?

• Similar results for ASEP conditioned on atypical current [Belitsky, GMS

(2015)]

⇒ Connection to dynamical phase transition, travelling waves, ?

• (reverse) duality in other models with open boundaries?
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• Open KLS model (δ = 0, ε > 0): Symmetric current-density
relation, coexistence in maximal current phase

− Maximal-current coexistence phase

− Downward contact discontinuity

− New phenomenon: Weak pinning w(t, L) = Lαf (t/Lz) with
unexpected exponents α ≈ 3/4, z ≈ 9/4 [Schweers, Locher, GMS, Maass (2023)]

⇒ Microscopic structure and fluctuations of contact discontinuity?

• Multiple conservation laws?

• . . .
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This meeting:

Boundary driven systems:

- Hydrodynamic description of open boundaries

- Long-range correlations via duality

- Large deviation theory

Role of conservation laws and travelling waves:

- Microscopic shocks for one conservation law via duality

- Boundary-induced phase transitions for bulk-driven systems with
two conservation laws

- Universal features of travelling waves in the absence of a
conservation law
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