1. Introduction	2. Boundary-induced phase transitions	3. Reverse duality	3. Shock ASEP and reverse duality for the open ASEP

Boundaries in driven systems

Gunter M. Schütz

Instituto Superior Técnico, University of Lisbon

- 1. Introduction to the theme
- 2. Boundary-induced phase transitions
- 3. Reverse duality for the open ASEP
- 4. Outlook

 1. Introduction 0000
 2. Boundary-induced phase transitions 0. Reverse duality
 3. Reverse duality
 3. Shock ASEP and reverse duality for the open ASEP 00000

1. Introduction to the theme

Many-body systems out of equilibrium

- Mathematical modelling: infinite system or periodic boundary conditions
- translation invariance
- conservation laws
- symmetry and duality
- ★ Bulk behaviour unaffected
- Real physical systems: box, boundary fields and/or open b.c.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- No translation invariance
- Exchange of mass, energy and other conserved quantities
- bulk symmetries broken
- ★ Bulk behaviour depends on b.c.

1. Introduction	2. Boundary-induced phase transitions	3. Reverse duality	3. Shock ASEP and reverse duality for the open ASEP
0000			

One space dimension

- dramatic and unexpected effects
- non-equilibrium bulk phase transitions
- long-range correlations
- anomalous transport
- . . .

\bigstar Challenge:

- deal with absence of translation invariance, conservation laws, conventional symmetries

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- understand emergence of new phenomena

Some questions of current interest (phenomena)

- Steady states with broken conservation law (microscopic)
- steady state selection in bulk and boundary-driven systems
- correlations in boundary-driven systems
- Hydrodynamics (macroscopic)
- boundary conditions in terms of pde
- microscopic structure of rarefaction waves and discontinuities

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- solitons and other travelling waves
- spde's for fluctuation fields
- Large deviations (microscopic and macroscopic)
- additivity principle
- macroscopic fluctuation theory
- dynamical phase transitions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Some problems of current interest (models)

Traditional studies: short range interactions and short-range correlations in the absence of boundaries

- Long-range interactions
- long-range jumps
- local jumps with long-range rates
- \Rightarrow How do we define microscopic b.c.?
- Long-range correlations even without boundaries
- \Rightarrow Do such models exist in 1 dim?
- Many conservation laws
- Deterministic cellular automata

All seems somehow interconnected ...

 \Rightarrow Questions: Which feature is important for what on which level of description in the presence of boundaries? Are there any general answers? Universality?

- Some basic insights that have emerged:
- Boundary-driven: Current supported by long-range correlations
- Bulk and boundary driven: Travelling wave hits boundary

★ Ambitious. Today: discuss some recent developments in the study of steady states, hydrodynamics, and fluctuations in the presence of boundaries as well as related problems.

 \bigstar Attack the problem of general insights by studying concrete models

- ロ ト - 4 回 ト - 4 □

2. Boundary-induced phase transitions

Open driven diffusive systems

- bulk: (i) biased random motion, (ii) short range interaction, (iii) particle conservation

- boundaries: coupling to external reservoirs with fixed densities

 $J(\rho)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- \Rightarrow stationary particle current J(
 ho)
- \Rightarrow Steady-state selection (which density)?

1. Introduction	2. Boundary-induced phase transitions	3. Reverse duality	3. Shock ASEP and reverse duality for the open ASEP
	•••••		

Boundary-induced phase transitions [Krug (1991), Popkov, GMS (1999)]

• Extremal-current principle [Popkov, GMS (1999)]

$$J = \begin{cases} \max_{\rho \in [\rho^+, \rho^-]} J(\rho) & \rho^- > \rho^+ \\ \min_{\rho \in [\rho^-, \rho^+]} J(\rho) & \rho^- < \rho^+ \end{cases}$$

- Universal density profile $\rho_k=\sqrt{\frac{\kappa}{\pi k}}$ in extremal current phases [Hager, Krug, Popkov, GMS (2001)]
- Derivations:
- regularization of hydrodynamic equation with Dirichlet boundary condition For ρ^+ = 0: [Krug (1991)
- flow of microscopic fluctuations [Popkov, GMS (1999)]
- entropy solutions for hydrodynamic equations [Bahadoran [2010]

・ロト・日本・日本・日本・日本

Open asymmetric simple exclusion process (ASEP)

• ASEP: At most one particle per site on integer lattice with L sites $\eta = (\eta_1, \dots, \eta_L), \ \eta_k \in \{0, 1\}$

Process	Transition	Rate
Jump to the right	$10 \rightarrow 01$	r
Jump to the left	$01 \rightarrow 10$	ℓ
Deposition at site 1 (L)	0 ightarrow 1	α (δ)
Annihilation at site 1 (L)	1 ightarrow 0	γ (β)

1. Introduction	2. Boundary-induced phase transitions	3. Reverse duality	3. Shock ASEP and reverse duality for the open ASEP
	00000		

- Invariant measure for p.b.c.: Bernoulli product measure with density ρ (uncorrelated)
- Stationary current: $J(
 ho) = (r \ell)
 ho(1
 ho)$
- Open: exact stationary distribution via matrix product ansatz [Derrida, Evans, Hakim, Pasquier (1993)] Or recursive [Domany, GMS (1993)]
- Phase diagram:
- Low-density phase LD $\rho=\rho_-$
- coexistence line (first order transition)
- High-density phase HD $\rho=\rho_+$
- second order transition lines
- maximal-current phase ho=1/2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

1. Introduction	2. Boundary-induced phase transitions	3. Reverse duality	3. Shock ASEP and reverse duality for the open ASEP
0000	000000	00000	000000

• First order transition: microscopic sharpness of macroscopic shock discontinuity

• Second order transition: confinement of rarefaction wave and nonlinear fluctuating hydrodynamics

1. Introduction	2. Boundary-induced phase transitions	3. Reverse duality	3. Shock ASEP and reverse duality for the open ASEP
	000000		

Open Katz-Lebowitz-Spohn model

• Exclusion process with next-nearest-neighbour interaction [Katz,

Lebowitz, Spohn (1985)]

• TAKLZ: Bulk jump rates at bond (k, k + 1)

Transition	Rate
$0100 \rightarrow 0010$	$1+\delta$
$1100 \rightarrow 1010$	$1 + \epsilon$
$0101 \rightarrow 0011$	$1-\epsilon$
$1101 \rightarrow 1011$	$1-\delta$

• Invariant measure for p.b.c.: Ising measure (short-range correlations)

Stationary current $J(\rho)$:

Phase diagram ($\delta > 0$, $\epsilon > 0$):

(a)

æ

3. Reverse duality for the open ASEP

Duality

- Consider two Markov processes $\eta(t)$ and x(t) with generally different countable state spaces
- Intensity matrices $W_{nn'} = w(\eta \rightarrow \eta')$, $Q_{xx'} = w(x \rightarrow x')$
- Quantum Hamiltonian formalism: $H = -W^T$. $G = -O^T$
- Invariant measures μ_n^* , π_x^*
- Reverse processes for strictly positive invariant measures:

$$H_{rev} = \hat{\mu}^* H^T (\hat{\mu}^*)^{-1}, \quad G_{rev} = \hat{\pi}^* G^T (\hat{\pi}^*)^{-1}$$

- Diagonal matrices: $\hat{\mu}^*$, $\hat{\pi}^*$ with μ_n^* , π_x^* on the diagonal

• (Conventional) Duality: Relationship between two processes that yields time-dependent expectations of one process in terms of the dual in terms of a duality function $D(x, \eta)$ [Liggett, 1985]

• Paradigmatic example: Symmetric simple exclusion process (SSEP) where hard-core particles perform lattice random walk

- Expectation of local density at time t for many-particle initial state given in terms of transition probability for just one particle

– Joint expectation for N particles at times t_1, \ldots, t_N given in terms of transition probability for N particles

- Origin: SU(2) symmetry of generator (apparent through relationship to quantum XXX Heisenberg spin chain [GMS and Sandow, 1994])

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1. Introduction	2. Boundary-induced phase transitions	3. Reverse duality	3. Shock ASEP and reverse duality for the open ASEP
		00000	

- Duality at the level of generators: $DH = G^T D$
- Duality matrix $D_{\!\! ext{x} \eta} = D(\!\! ext{x}, \eta)$
- Expectation $\langle D(\mathsf{x}, \boldsymbol{\eta}(t)) \rangle_{\boldsymbol{\eta}} = \langle D(\mathsf{x}(t), \boldsymbol{\eta}) \rangle_{\mathsf{x}}$
- For family of functions $f^{\mathsf{x}}(\eta) := D(\mathsf{x},\eta)$:

$$\langle f^{\mathsf{x}}(t) \rangle_{\mu} = \sum_{\mathsf{y}} P(\mathsf{x}, t | \mathsf{y}, \mathsf{0}) \langle f^{\mathsf{y}}(\mathsf{0}) \rangle_{\mu}$$

with transition probability P(x, t|y, 0) of dual process

• Useful information about <u>expectations</u> if dual process has simple properties

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Reversible process $H = G^T$: Duality = Symmetry

• Reverse duality: $HR = RG^T$

with reverse duality matrix R and duality function $R_{\eta \mathsf{x}} = R(\eta,\mathsf{x})$

• Useful information about <u>measures</u> if reverse dual process has simple properties

- For family of measures $\mu_{oldsymbol{\eta}}^{\mathsf{x}}(t) := R(oldsymbol{\eta},\mathsf{x})$:

$$\mu_{\boldsymbol{\eta}}^{\mathsf{x}}(t) = \sum_{\mathsf{y}} P(\mathsf{x}, t | \mathsf{y}, \mathsf{0}) \mu_{\boldsymbol{\eta}}^{\mathsf{y}}(\mathsf{0})$$

- Duality function can take negative values (corresponding to signed measures)

- Reversible process $H = G^T$: Reverse duality = Symmetry
- ★ BUT: open boundary breaks symmetry

Open ASEP

- Hopping asymmetry and time scale $q := \sqrt{\frac{r}{\ell}}, \quad w := \sqrt{r\ell}$
- Boundary densities ho_\pm and boundary jump barriers ω_\pm

$$\begin{aligned} \alpha &= (r + \omega_{-})\rho_{-}, \quad \gamma &= (\ell + \omega_{-})(1 - \rho_{-}) \\ \beta &= (r + \omega_{+})(1 - \rho_{+}), \quad \delta &= (\ell + \omega_{+})\rho_{+} \end{aligned}$$

• Fugacities:

$$z_{\sharp}\equiv z(
ho_{\sharp})=rac{
ho_{\sharp}}{1-
ho_{\sharp}}$$

• Sandow function [Sandow, 1994]

$$\kappa_{\pm}(x,y) := \frac{1}{2x}(y - x + r - \ell \pm \sqrt{(y - x + r - \ell))^2 + 4xy})$$

$$\kappa_{\pm}(\alpha,\gamma) = z_{-}^{-1}, \quad \kappa_{\pm}(\beta,\delta) = z_{\pm}$$

$$\kappa_{-}(\alpha,\gamma) = -\frac{\ell + \omega_{-}}{r + \omega_{-}}, \quad \kappa_{-}(\beta,\delta) = -\frac{\ell + \omega_{\pm}}{r + \omega_{\pm}}$$

- Invariant matrix product measure (MPM) with generally infinite-dimensional matrices [Derrida et al., 1993]
- Special manifolds

$$\begin{split} \mathcal{B}_{N} &:= \{ \alpha, \beta, \gamma, \delta \in \mathbb{R}^{+} : \kappa_{+}(\alpha, \gamma) \kappa_{+}(\beta, \delta) = q^{2N} \} \\ \mathcal{B}_{N}^{M} &:= \{ \alpha, \beta, \gamma, \delta \in \mathcal{B}_{N} : \kappa_{-}(\alpha, \gamma) \kappa_{-}(\beta, \delta) = q^{-2M} \}, \quad 1 \leq M \leq N \end{split}$$

 \star No MPM on \mathcal{B}_{N}^{M} for $L \leq N-M+1$ [Essler and Rittenberg, 1996]

 \star (N + 1)-dimensional matrices on manifold $\mathcal{B}_N\setminus\mathcal{B}_N^M$ for any L and on \mathcal{B}_N^M for L>N-M+1 [Mallick and Sandow, 1997]

 \star M = 1, L = N: Finite blocking measure with strictly increasing marginal fugacities $z_k \propto q^{2k}$ [Bryc and Swieca, 2019]

Shock ASEP

• At most one particle per site on integer lattice with *L* sites, *N* particles, single-file jumps, reflecting boundaries

 $x = (x_1, ..., x_N), \ 1 \le x_1 < \cdots < x_i < x_{i+1} < \cdots < x_N \le L$

ProcessTransitionRateJump of particle *i* to the right $x_i \rightarrow x_i + 1$ r_i Jump of particle *i* to the left $x_i \rightarrow x_i - 1$ ℓ_i l_1 r_1 l_2 r_3 ℓ_4

with pairwise unequal parameters $ho_i \in (0,1)$

Proposition (Reversibility of shock ASEP)

The N-particle shock exclusion process with reflecting boundaries is reversible w.r.t. the unnormalized product measure

$$\pi_{\mathsf{x}}^* = \prod_{i=1}^{N} d_i^{2\mathsf{x}_i}$$

where

$$d_i := \sqrt{\frac{r_i}{\ell_i}}$$

is the hopping asymmetry of particle i.

Proof: (i) The definition of the shock ASEP implies

$$z_i = q^2 z_{i-1} \tag{(*)}$$

(ii) Straightforward computation shows $G^{rev} = \hat{\pi}^* G^T (\hat{\pi}^*)^{-1} = G$.

 1. Introduction
 2. Boundary-induced phase transitions
 3. Reverse duality
 3. Shock ASEP and reverse duality for the open ASEP

 0000
 00000
 00000
 00000

Definition (Bernoulli shock measures)

With auxiliary boundary reservoir sites $x_0 := 0$ and $x_{N+1} := L + 1$ the product measure $\mu_{\eta}^{\mathsf{x}} = \prod_{k=1}^{L} p_{\eta_k}^{\mathsf{x}}$ with marginals

$$p_{\eta_k}^{\mathsf{x}} = \begin{cases} (1 - \rho_i^{\mathsf{x}})(1 - \eta_k) + \rho_i^{\mathsf{x}}\eta_k & k = x_i, \quad 1 \le i \le N \\ (1 - \rho_i)(1 - \eta_k) + \rho_i\eta_k & x_i < k < x_{i+1}, \quad 0 \le i \le N \end{cases}$$

is called a Bernoulli shock measure with N microscopic shocks at positions $x_i \in \{1, ..., L\}$ and bulk densities ρ_i for $0 \le i \le N$, and shock densities ρ_i^* for $1 \le i \le N$.

Theorem (One-particle reverse duality)

Let H be the generator of the open ASEP and for parameters ρ_0 and ρ_1 let G be the generator of a simple biased random walk with jump rates r_1 , ℓ_1 and reflecting boundaries. Further, let μ_{η}^{\times} be the BSM with left bulk density $\rho_0 = \rho_-$ and shock density

$$\nu_1^\star = \frac{\alpha}{\alpha + \gamma}.$$

The generators H and G satisfy the reverse-duality relation

$$HR = RG^{T}$$

w.r.t. the duality matrix R with matrix elements $R_{\eta \times} = d_1^{2 \times} \mu_{\eta}^{\times}$ if and only if the following two conditions are satisfied: (i) The shock stability condition (\star) is satisfied for i = 1, (ii) The boundary rates are on the manifold \mathcal{B}_1^1 .

 1. Introduction
 2. Boundary-induced phase transitions
 3. Reverse duality
 3. Shock ASEP and reverse duality for the open ASEP

 0000
 00000
 00000
 00000

Corollary (Shock random walk)

Denote by $\mu_{\eta}^{*}(t)$ the distribution at time t of the open ASEP, and let Conditions (i) - (ii) of the previous Theorem be satisfied. Then, for any $x \in \{1, ..., L\}$

$$\mu_{\boldsymbol{\eta}}^{x}(t) = \sum_{y=1}^{L} P(y, t|x, 0) \, \mu_{\boldsymbol{\eta}}^{y}(0)$$

where

$$P(y,t|x,0) = \frac{d_1^2 - 1}{d_1^{2L} - 1} d_1^{2(y-1)} + \frac{2}{L} \sum_{p=1}^{L-1} d_1^{y-x} \psi_p(x) \psi_p(y) \frac{w}{\epsilon_p} e^{-\epsilon_p t}$$

with $\epsilon_p = w \left[d_1 + d_1^{-1} - 2\cos\left(\frac{\pi p}{L}\right) \right]$ and $\psi_p(y) := d_1 \sin\left(\frac{\pi p y}{L}\right) - \sin\left(\frac{\pi p (y-1)}{L}\right)$ is the transition probability of the biased random walk starting at time t = 0 from x. The limit $\mu_{\eta}^* := \lim_{t \to \infty} \mu_{\eta}^*(t)$ is the unique invariant measure and is given by the convex combination

$$\mu_{\eta}^{*} = \frac{d_{1}^{2} - 1}{d_{1}^{2L} - 1} \sum_{y=1}^{L} d_{1}^{2(y-1)} \mu_{\eta}^{y}$$

of shock measures μ_{η}^{y} .

Remarks

(1) On large scales the drift velocity and diffusion coefficient are given by the rates of the shock exclusion process even if (\star) is not satisfied [Ferrari and Fontes (1994)]

(2) The invariant measure of the open ASEP can be expressed by the two-dimensional representation of the stationary matrix product algebra. [Mallick and Sandow, 1997)]

(3) The spectrum of the generator G given by the eigenvalues ϵ_p yields a subset of eigenvalues of the generator H of the open ASEP and is in agreement with the picture of spectral properties arising from a shock random walk off the manifold \mathcal{B}_1^1 . [GMS and Domany (1993), Dudziński and GMS (2000); Santen and Appert (2002); de Gier and Essler (2006)]

Theorem (*N*-particle reverse duality)

Let H be the generator of the open ASEP and for parameters ρ_0, \ldots, ρ_N let G be the generator of the N-particle shock exclusion process. Further, let μ_{η}^{\times} be the BSM with left boundary density $\rho_0 = \rho_-$ and shock fugacities

$$z_i^{\star} = rac{lpha}{\gamma} q^{2(i-1)}$$

for $1 \le i \le N \le L$. The reverse-duality relation

$$HR = RG^T$$

w.r.t. the duality matrix R with matrix elements $R_{\eta \times} = \pi(\times)\mu_{\eta}^{\times}$ holds if and only if the following two conditions are satisfied: (i) The microscopic shock stability condition (\star) is satisfied for all $i \in \{1, ..., N\}$, (ii) The boundary rates are on the manifold \mathcal{B}_N^1 .

Corollaries

(1) The evolution of the open ASEP with an initial BSM with N shocks is given by the transition probabilities of the conservative N-particle shock exclusion process.

(2) The shock ASEP is also intertwining dual of the open ASEP.

Remarks

(1) Spectral properties of the generator H have been obtained from the Bethe ansatz

[Nepomechie (2004); De Gier and Essler (2005); Simon (2009); Crampé et al. (2010)]

(2) The conservative reflective boundaries of the reverse dual are in contrast to the conventional duality for the open SSEP which is dual to the SSEP with nonconservative absorbing boundaries. [Spohn (1983); Carinci et al. (2013); Frassek et al. (2020)]

(3) A reverse dual with absorbing boundaries exists. [GMS (2022)]

Outline of proofs

• To prove reverse duality notice:

(a) Columns of duality matrix R are the BSM probability vectors $|\,\mu^{\rm x}\,\rangle$

(b) Duality implies invariant subspace spanned by the BSM probability vectors: $H|\mu^{x}\rangle \in \text{span}\{|\mu^{y}\rangle\}$

 \Rightarrow Step 1: Use local transitions to prove that $H|\mu^{x}\rangle = \sum_{y} G_{xy}|\mu^{y}\rangle$

 \Rightarrow Step 2: Prove by computation that coefficients G_{xy} are nonpositive for $x \neq y$ and conserve probability, i.e., $G_{xx} = -\sum_{x \neq y} G_{xy}$

• To prove explicit time-dependent transition probability for one shock notice that *G* is a tridiagonal Toeplitz matrix

4. Outlook

- Reverse duality yields detailed microscopic structure of shocks under certain conditions
- microscopically sharp
- random walk of a single shock
- coalescence (bound state) of multiple shocks
- \Rightarrow Generalization to \mathcal{B}_N^M ?
- \Rightarrow Underlying symmetry?
- Similar results for ASEP conditioned on atypical current [Belitsky, GMS (2015)]
- \Rightarrow Connection to dynamical phase transition, travelling waves, ?
- (reverse) duality in other models with open boundaries?

• Open KLS model ($\delta = 0, \epsilon > 0$): Symmetric current-density relation, coexistence in maximal current phase

- Maximal-current coexistence phase
- Downward contact discontinuity
- New phenomenon: Weak pinning $w(t, L) = L^{\alpha}f(t/L^z)$ with unexpected exponents $\alpha \approx 3/4$, $z \approx 9/4$ [Schweers, Locher, GMS, Maass (2023)]
- \Rightarrow Microscopic structure and fluctuations of contact discontinuity?
- Multiple conservation laws?
- . . .

This meeting:

Boundary driven systems:

- Hydrodynamic description of open boundaries
- Long-range correlations via duality
- Large deviation theory

Role of conservation laws and travelling waves:

- Microscopic shocks for one conservation law via duality
- Boundary-induced phase transitions for bulk-driven systems with two conservation laws

- Universal features of travelling waves in the absence of a conservation law